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Abstract

New solutions of the heat conduction equation inside a spherical droplet are obtained. The droplet is assumed to be

heated by convection and radiation from the surrounding hot gas––a situation typical in many engineering applications.

Initial droplet evaporation and the effects of time dependent gas temperature and convection heat transfer coefficient

are taken into account. In the cases of constant, and almost constant convection heat transfer coefficients, the explicit

formulae for time dependent radial distribution of temperature inside droplets are obtained. In the case of arbitrary

convection heat transfer coefficient, the differential equations are reduced to the Volterra integral equation of the second

kind. A numerical scheme for the solution of this equation is suggested. The solution for constant convection heat

transfer coefficient is applied to a typical problem of fuel droplet heating in a diesel engine. It is shown that finite

thermal conductivity of fuel droplets and the effects of radiation need to be taken into account when modelling droplet

heating in diesel engines.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The heating of droplets is driven by convective and

radiative heat transfer from the surrounding medium. In

the case of convective heating, there is an initial increase

of temperature at the surface of the droplets, from where

the heat is transferred to their main body. In the case of

radiative heating of realistic semi-transparent droplets,

the thermal radiation is absorbed inside the droplets

[1,2]. Sirignano [3] considered the following classifica-

tion of models for heat transfer inside droplets in order

of increasing complexity: (1) constant droplet-tempera-

ture; (2) infinite liquid thermal conductivity; (3) con-
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duction-limit; (4) effective conductivity; (5) vortex model

of droplet heating; (6) Navier–Stokes solution.

Model 2 is perhaps most widely used in multidi-

mensional commercial Computational Fluid Dynamics

(CFD) codes [4–7] and analytical studies [8–10]. The

main attractive feature of this model is its simplicity.

However, model 3 can give a noticeable improvement in

the prediction of diesel spray evaporation processes

when compared with model 2 [11]. The authors of [11]

suggested that a numerical solution of the heat con-

duction equation inside droplets is added to the solution

of gas dynamics, heat transfer and chemical equations

for gas phase. The addition of these calculations would

certainly increase the CPU intensity of the code. It is

known that model 3 may not lead to an improvement in

the accuracy of computations in the case when the

contribution of recirculation inside droplets is significant

[3,12,13]. In this case, models 4–6 would have to be
ed.
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Nomenclature

a coefficient introduced in Eq. (7)

ak liquid fuel absorption coefficient

A coefficient introduced in Appendix A

b coefficient introduced in Eq. (7)

B coefficient introduced in Appendix A

Bk Planck function

BM Spalding number

c specific heat capacity

c0 constant introduced in Eq. (B.2)

cn coefficients introduced in Eq. (A.1)

C1;2 coefficients in the Planck function

f ðrÞ parameter introduced in formula (A.7)

fn coefficients introduced in formula (A.7)

kF k norm of the function F
Gðt; rÞ kernel defined by formula (24)eGðtÞ function defined by formula (B.2)

h convection heat transfer coefficient

h0
hRd

kl
� 1

h1 parameter introduced in formula (20)

HðtÞ hðtÞRd

kl
� 1

Ið�tÞ auxiliary integral introduced in Appendix C

k thermal conductivity

L specific heat of evaporation

M molar mass

MðtÞ hðtÞTeffðtÞRd=kl
n index of refraction

N number of timesteps

Nu Nusselt number

qn coefficients introduced in formula (A.6)

Qa efficiency factor of absorption

pn coefficients introduced in formula (A.5)

P ðrÞ P1ðrÞ=ðclqlÞ
P1ðRÞ power generated in unit volumeeP rP ðrÞ
Pe Peclet number

Pr Prandtl number

r normalised radius (R=Rd)

R radius

Re Reynolds number

t time

T temperatureeT0ðrÞ parameter introduced in formula (A.6)

u Tr
Uðr; tÞ function introduced in formula (22)

vnðrÞ the full set of non-trivial solutions of Eq.

(A.2)

kvnðrÞk parameter introduced in Eq. (A.4)

w normalized absorbed spectral power of

radiation per unit volume

W function introduced in Eq. (11)

Y relative concentration

Greek symbols

�c parameter introduced in Eq. (E.1)

d small parameter introduced in Eq. (B.1)

dnm 0 if n 6¼ m, 1 if n ¼ m
Dt timestep

� small parameter introduced in formula (29)

gðtÞ h1ðtÞ=�
j kl=ðclqlR

2
dÞ

jk index of absorption

k wavelength or parameter introduced in Eq.

(A.2)

kn eigenvalues of Eq. (A.2)

l0ðtÞ
hTeffðtÞRd

kl
lc parameter introduced in Eq. (E.1)

lg0ðtÞ �h1ðtÞuþ l0ðtÞ
l� parameter introduced in Eq. (E.1)

m0;1;2;...;n function introduced in formula (29)

n parameter introduced in formula (E.2)

q density

s optical thickness or the argument in the in-

tegrands

s0 akRd

v keff=kl
wðtÞ function introduced in formula (C.1)

Subscripts

a air

b boiling

d droplet

eff effective

ext external

f fuel

fs saturated fuel vapour

g gas

p constant pressure

s surface

up upper
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applied. Direct application of models 5 and 6, however,

would require considerable computational resources to

take into account 3D effects [13]. Model 4, where the

effect of convective heat transfer inside droplets is ac-
counted for by replacing the actual thermal conductivity

of liquid kl by the so called effective thermal conductivity

keff , seems to be a reasonable compromise between

accuracy and computational efficiency. In this model it is
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assumed that keff ¼ vkl, where the coefficient v varies

from about 1 (at droplet Peclet number PedðfÞ ¼
RedðfÞPrdðfÞ < 10) to 2.72 (at PedðfÞ > 500) and can be

approximated as [3]: v ¼ 1:86þ 0:86 tanh½2:225 log10 

ðPedðfÞ=30Þ�. Liquid fuel transport properties were used

for calculating PedðfÞ. This model can predict the droplet

average surface temperature, but not the distribution of

temperature inside droplets. In our case, however, we are

primarily interested in the accurate prediction of the

former temperature, which controls droplet evaporation.

Hence, the applicability of this model can be justified.

The aforementioned classification of the models was

suggested based on the assumption that droplet heating

is driven by convection. However, it can be equally ap-

plied to the case when the contribution of radiation is to

be taken into account. The contribution of radiation is

particularly important in the case when fresh droplets

are injected into the burning gas in diesel engines. The

temperature of gas in this case can exceed 2500 K [14–

16]. So far the modelling of droplet convective and

radiative heating, taking into account its finite effective

thermal conductivity, has been performed based on the

numerical simulation of the underlying equations. In

this paper, the results of an analytical study of these

processes will be presented. The approach presented in

this paper is complementary to the one based on the

assumption about the parabolic temperature profile

distribution inside droplets [17,18]. The latter approach

is more accurate than the one based on the assumption

of no temperature gradient inside droplets, but less

accurate than the one considered in this paper.

The previously suggested analytical solutions of the

heat conduction equation in a sphere were limited to the

case when the convection heat transfer coefficient was

constant, and the heat source depended on time, but

spacially homogeneous [20]. A number of analytical

solutions for specific heat source distributions in a

sphere are presented in [19], but no convection has been

accounted for. The analytical solutions discussed in this

paper are generalisations of the results reported in [19–

22]. At first the explicit solution of the problem with

constant heat transfer coefficient, but arbitrary distri-

bution of radiative heat inside droplets, and arbitrary

initial temperature distribution inside droplets, is con-

structed in the form of a convergent series. This solution

is used as an auxiliary tool to solve the problem with the

time-dependent heat transfer coefficient. The latter

problem is reduced to the solution of an integral equa-

tion. This solution is unique and can be obtained

numerically. The numerical algorithm is discussed. An

approximate solution of the integral equation is ob-

tained using the perturbation method for the case of

almost constant heat transfer coefficient. An arbitrary

initial distribution of temperature inside droplets is as-

sumed. The effect of evaporation is taken into account

via a non-zero time derivative of droplet radius in the
enthalpy equation. The solution, however, is based on

the assumption that the changes in droplet surface area

are negligibly small. This assumption is justified when

the time interval is small, while the latent heat of evap-

oration is large. Its range of applicability is investigated.

The contribution of the radiation term is calculated

using the simplified model developed by Dombrovsky

and Sazhin [23,24]. The solution for the constant heat

transfer coefficient is applied to the problem of fuel

droplet heating in diesel engines.

The basic equations and approximations used in our

analysis are discussed in Section 2. The solutions of the

heat conduction equation are presented in Section 3.

The application of one of the solutions to the problem

of heating of diesel fuel droplets, is discussed in Sec-

tion 4. The main results of the paper are summarised in

Section 5.
2. Basic equations and approximations

Assuming that the temperature distribution inside a

droplet (T ) is spherically symmetrical the transient heat

conduction equation inside this droplet can be written as

[19,20]

clql

oT
ot

¼ kl
o2T
oR2

�
þ 2

R
oT
oR

�
þ P1ðRÞ; ð1Þ

where cl, ql and kl are the liquid specific heat capacity,

density and thermal conductivity respectively (assumed

to be constant), R is the distance from the centre of the

sphere, t is time and P1ðRÞ is the power generated in unit

volume inside the droplet due to external radiation.

If the droplet is heated by convection from the sur-

rounding gas, and cooled down due to evaporation, the

energy balance equation at the droplet surface can be

written as

hðTg � TsÞ ¼ �qlL _Rd þ kl
oT
oR

����
R¼Rd

; ð2Þ

where h ¼ hðtÞ is the convection heat transfer coefficient

(time dependent in the general case), Rd is the droplet’s

radius, Tg is the gas ambient temperature, Ts is the

droplet’s surface temperature, L is the specific heat of

evaporation. We took into account that _Rd < 0 during

the evaporation process. Eq. (2) can be considered as a

boundary condition for Eq. (1) at R ¼ Rd. This needs to

be complemented by the boundary condition at R ¼ 0:
oT
oR

��
R¼0

¼ 0, and the intial condition T ðt ¼ 0Þ ¼ T0ðRÞ.
Introducing the normalised radius r ¼ R=Rd, Eq. (1)

can be rewritten as

oT
ot

¼ j
o2T
or2

�
þ 2

r
oT
or

�
þ P ðrÞ; ð3Þ
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where

j ¼ kl
clqlR

2
d

;

PðrÞ ¼ P1ðrRdÞ=ðclqlÞ

¼ 3p
Rd

Z k2

k1

wðr; kÞQaBkðTextÞdk

� ��
ðclqlÞ;

BkðTextÞ is the Planck function defined as

BkðTextÞ ¼
C1

pk5½expðC2=ðkTextÞÞ � 1�
;

C1 ¼ 3:742
 108 W lm4=m2, C2 ¼ 1:439
 104 lmK, k
is the wavelength in lm. Text is assumed to be constant.

Qa is the efficiency factor of absorption which is esti-

mated as [23,25]

Qa ¼
4n

ðnþ 1Þ2
½1� expð�2akRdÞ�;

wðrÞ is the normalised spectral power of radiation per

unit volume absorbed inside the droplet [23],

ak ¼ 4pjk=k is the liquid fuel absorption coefficient, n is

the refractive index, k1 and k2 describe the spectral range

of thermal radiation which contributes to droplet heat-

ing.

Eq. (2) can be rearranged to

Teff � Ts ¼
kl
hRd

oT
or

����
r¼1

; ð4Þ

where Teff ¼ Tg þ qlL _Rd

h . Eq. (4) is complemented by the

boundary condition at r ¼ 0 and the corresponding

initial condition mentioned above.

Teff is time dependent in the general case to account

for the effect of droplet evaporation and gas cooling.

Although we take into account non-zero _Rd due to

evaporation, we assume that Rd is constant in all terms

except in the definition of Teff . This assumption would

certainly be not acceptable if we attempted to describe

the whole process of droplet evaporation by a single

analytical formula. Our solutions, however, are sug-

gested with a view of incorporation into a CFD code,

where it will be applied over relatively small time steps.

Due to the large value of the coefficient qlL=h, the cor-

rection to Tg leading to Teff can be justified even if the

solutions are considered over small time intervals. In the

realistic situation the temperature dependence of ql

needs to be taken into account. This would lead to the

initial increase, rather than decrease of droplet radii

despite the effect of evaporation [5].

The value of _Rd is controlled by fuel vapour diffusion

from the droplet surface [3]:

_Rd ¼ � kg lnð1þ BM Þ
qlcpgRd

; ð5Þ
where BM ¼ Yfs=ð1� YfsÞ is the Spalding number, Yfs is

the mass fraction of fuel vapour near the droplet surface:

Yfs ¼ 1

�
þ p

pfs

�
� 1

�
Ma

Mf

��1

; ð6Þ

p and pfs are ambient pressure and the pressure of sat-

urated fuel vapour near the surface of droplets respec-

tively, Ma and Mf are molar masses of air and fuel; pFs
can be calculated from the Clausius–Clapeyron equation

presented in the form [26,27]:

pFs ¼ exp a
�

� b
Ts � 43

�
; ð7Þ

a and b are constants to be specified for specific fuels, pFs
is in kPa.

A more general kinetic approach to the problem is

based on the solution of the Boltzmann equation in the

Knudsen layer surrounding the droplet. In diesel engines

this kinetic model predicts up to 5–10% larger evapo-

ration times when compared with the evaporation times

predicted by the hydrodynamic model on which Eq. (5)

is based [28]. Analysis of the kinetic model is beyond the

scope of this paper.

Eqs. (3) and (5) can be solved by iterations. At first

one can assume that Ts ¼ Ts0 in Eq. (7) and obtain the

solution of Eq. (3) as Ts ¼ Ts1ðtÞ. Then this solution is

substituted into Eq. (7). When Ts approaches the boiling
temperature Tb then the assumptions Yfs � 1 and

Rd ¼ const become no longer applicable. The solution of

the problem in this case is beyond the scope of this paper

(see [29]).

Introduction of the new variable u ¼ Tr allows us to
rewrite Eq. (3) as

ou
ot

¼ j
o2u
or2

þ eP ðrÞ ð8Þ

with the boundary and initial conditions:

ou
or

þ HðtÞu ¼ MðtÞ when r ¼ 1

u ¼ 0 when r ¼ 0

uðt ¼ 0Þ ¼ rT0ðrRdÞ 
 eT0ðrÞ when 06 r6 1

9>=>; ð9Þ

where

HðtÞ ¼ hðtÞRd

kl
� 1; MðtÞ ¼ hðtÞTeffðtÞRd

kl
; eP ðrÞ ¼ rPðrÞ:
3. Analytical solutions

3.1. Case h(t)¼ const

At first we consider the case hðtÞ 
 h ¼ const. Hence,

HðtÞ 
 h0 ¼ ðhRd=klÞ � 1 ¼ const. Introducing a new

parameter l0ðtÞ ¼ hTeffðtÞRd=kl we can rewrite Eqs. (9) as
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ou
or

þ h0u ¼ MðtÞ ¼ l0ðtÞ when r ¼ 1

u ¼ 0 when r ¼ 0

uðt ¼ 0Þ ¼ rT0ðrRdÞ 
 eT0ðrÞ when 06 r6 1

9>=>; ð10Þ

Remembering that h0 > �1 let us look for the solution

of Eq. (8) in the form:

uðr; tÞ ¼ 1

1þ h0
rl0ðtÞ þ W ðr; tÞ: ð11Þ

Having substituted function (11) into Eq. (8) we find

the equation for W :

oW
ot

¼ j
o2W
or2

þ eP ðrÞ � r
1þ h0

dl0ðtÞ
dt

ð12Þ

with the boundary and initial conditions:

W jr¼0 ¼
oW
or

þ h0W
� �����

r¼1

¼ 0;

W jt¼0 ¼ eT0ðrÞ �
r

1þ h0
l0ð0Þ:

9>=>; ð13Þ

The solution of Eq. (12) subject to (13) can be pre-

sented as (see Appendix A)

W ðr; tÞ ¼
X1
n¼1

pn
jk2

n

(
þ exp½ � jk2

nt� qn

 
þ fnl0ð0Þ �

pn
jk2

n

!

þ fn

Z t

0

dl0ðsÞ
ds

exp½ � jk2
nðt � sÞ�ds

)
sin knr;

ð14Þ

where pn, qn, fn and kn are defined by Eqs. (A.8) and

(A.3), and

uðr; tÞ ¼ 1

1þ h0
rl0ðtÞ

þ
X1
n¼1

pn
jk2

n

(
þ exp½ � jk2

nt� qn

 
þ fnl0ð0Þ �

pn
jk2

n

!

þ fn

Z t

0

dl0ðsÞ
ds

exp½ � jk2
nðt � sÞ�ds

)
sin knr:

ð15Þ

Remembering (A.8) and the definition of u, the final

solution of Eq. (3) can presented as

T ðr; tÞ ¼ 1

r

X1
n¼1

pn
jk2

n

(
þ exp½ � jk2

nt� qn

 
� pn

jk2
n

!

� sin kn

kvnk2k2
n

l0ð0Þ exp½ � jk2
nt�

� sin kn

kvnk2k2
n

Z t

0

dl0ðsÞ
ds

exp½ � jk2
nðt � sÞ�ds

)

 sin knr þ TeffðtÞ: ð16Þ
We took into account that TeffðtÞ ¼ kll0ðtÞ=ðhRdÞ. If

T0ðrÞ is twice differentiable, then the series in (14)–(16)

converge absolutely and uniformly for all tP 0 and

r 2 ½0; 1� since

jpnj < const; jqnj <
const

k2
n

;

j sin knrj6 1; expð�j0k
2
ntÞ6 1;

and k�2
n < n�2 for n > 1. It can be shown that

kn > pðn� 1Þ. Hence, for n > 1:

kn > np 1

�
� 1

n

�
> np=2 > n: ð17Þ

When l0 ¼ const, P ðrÞ ¼ 0, Teff ¼ const and kl ! 1
Eq. (16) reduces to [30]

Ts ¼ Tg þ ðTs0 � TgÞ exp
�
� 3ht
clqlRd

�
; ð18Þ

where Tsðt ¼ 0Þ ¼ Ts0.
The same expression could be obtained directly from

the energy balance at the surface of the droplet,

assuming that there is no temperature gradient inside the

droplet (model 1):

4

3
pR3

dqlcl
dTs
dt

¼ 4pR2
dhðTg � TsÞ: ð19Þ
3.2. Case h(t) 6¼ const (general case)

Let us assume that

HðtÞ ¼ h0 þ h1ðtÞ; ð20Þ

where h0 ¼ const 6¼ �1 and h1ðtÞ is an arbitrary function

of time. This enables us to use the results obtained in the

previous section for the general analysis. If h0 ¼ 0 then

HðtÞ ¼ h1ðtÞ.
Having substituted (20) into conditions (9) we can

generalise conditions (10) as

ou
or

þ h0u ¼ �h1ðtÞuþ l0ðtÞ 
 lg0ðtÞ when r ¼ 1

u ¼ 0 when r ¼ 0

uðt ¼ 0Þ ¼ rT0ðrRdÞ 
 eT0ðrÞ when 06 r6 1

9>>>=>>>;:

ð21Þ

If lg0ðtÞ is a known function then conditions (21) re-

duce to conditions (10) with l0ðtÞ replaced by lg0ðtÞ.
The analytical solution of the problem would then be

given by series (15) with l0ðtÞ replaced by lg0ðtÞ. Inte-
gration of the last term of this equation by parts allows

us to write
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uðr; tÞ ¼
rlg0ðtÞ
1þ h0

þ Uðr; tÞ þ
X1
n¼1

fnlg0ðtÞ
�

� jk2
nfn



Z t

0

lg0ðsÞ exp½ � jk2
nðt � sÞ�ds

�
sin knr; ð22Þ

where

Uðr; tÞ ¼
X1
n¼1

pn
jk2

n

(
þ exp½ � jk2

nt� qn

 
� pn

jk2
n

!)
sinðknrÞ:

Remembering (A.7) and (A.8) we can rewrite (22) as

uðr; tÞ ¼ Uðr; tÞ �
Z t

0

lg0ðsÞGðt � s; rÞds; ð23Þ

where

Gðt; rÞ ¼ j
X1
n¼1

k2
nfn exp½�jk2

nt� sin knr

¼ �j
X1
n¼1

sin kn

kvnk2
exp½�jk2

nt� sin knr: ð24Þ

One can show that Gðt; rÞ is continuous at t > 0. For

t ! þ0 the following inequality holds:

jGðt; rÞj < cffiffi
t

p ð25Þ

uniformly with respect to r 2 ½0; 1� (see Appendix B).

Remembering that lg0ðtÞ ¼ MðtÞ � h1ðtÞuð1; tÞ we can
rewrite (23) in the form:

uðr; tÞ ¼ Uðr; tÞ �
Z t

0

½MðsÞ � h1ðsÞuð1; sÞ�Gðt � s; rÞds:

ð26Þ

This formula gives us an integral representation of the

solution of the problem (8), (21). For r ¼ 1 integral

representation (26) reduces to the integral equation for

the function uð1; tÞ:

uð1; tÞ ¼ Uð1; tÞ �
Z t

0

½MðsÞ � h1ðsÞuð1; sÞ�Gðt � s; 1Þds;

ð27Þ

where

Gðt; 1Þ ¼ �j
X1
n¼1

sin2 kn

kvnk2
exp½�jk2

nt�

¼ �2j
X1
n¼1

k2
n

h20 þ h0 þ k2
n

exp½�jk2
nt�: ð28Þ

We took into account that

sin2 kn ¼
1

1þ cot2 kn
¼ 1

1þ h0=knð Þ2
¼ k2

n

k2
n þ h20

:

If h0 ¼ 0 then Gðt; 1Þ ¼ �2j
P1

n¼1 exp½�jk2
nt�, where

kn ¼ pðn� ð1=2ÞÞ. As shown in Appendix B, the kernel
Gðt; 1Þ is continuous if t 6¼ 0. It has integrable singularity

Gðt; 1Þ / t�1=2 when t ! þ0. The integral equation (27)

is the so-called Volterra integral equation of the second

kind. This equation has a unique solution, although this

solution cannot be found in an explicit form. The

scheme of its numerical solution is described in Appen-

dix C. Once the solution of this equation has been found

we can substitute it into integral representation (26) and

find the required solution of the initial and boundary

value problem (8), (21). The required distribution of T is

found as T ¼ u=r. In the case when h1ðtÞ ¼ 0 this solu-

tion reduces to that given by (16). To simplify the

numerical solution of the equation it is reasonable to

take h0 ¼ 0. In this case kn ¼ pðn� ð1=2ÞÞ and kvnk2 ¼
1=2 in all equations.

3.3. Case of almost constant h(t)

In the case of almost constant hðtÞ we can use rep-

resentation (20) and assume that h1ðtÞ ¼ �gðtÞ, where � is
a small parameter. In this case the perturbation theory

can be applied to the analysis of Eq. (27). We look for

the solution uð1; tÞ of this equation in the form:

uð1; tÞ 
 mðtÞ ¼ m0ðtÞ þ �m1ðtÞ þ �2m2ðtÞ þ � � �

¼
X1
j¼0

�jmjðtÞ: ð29Þ

The substitution of series (29) into the integral

equation (27) gives

X1
j¼0

�jmjðtÞ ¼ Uð1; tÞ �
Z t

0

MðsÞ
"

� gðsÞ
X1
j¼0

�jþ1mjðsÞ
#
:


 Gðt � s; 1Þds: ð30Þ

The terms with the same powers of � in the left-hand and

the right-hand sides of Eq. (30) should be equal. Hence,

Eq. (30) reduces to the following system of equations:

�0 : m0ðtÞ ¼ Uð1; tÞ �
R t
0
MðsÞGðt � s; 1Þds;

�1 : m1ðtÞ ¼
R t
0
gðsÞm0ðsÞGðt � s; 1Þds;

..

.

�j : mjðtÞ ¼
R t
0
gðsÞmj�1ðsÞGðt � s; 1Þds;

9>>>>=>>>>; ð31Þ

Formulae (31) allow us to find all functions mjðtÞ step-
by-step. Substitution of these functions into series (29)

gives the solution of the integral equation (27) in the

form of a power series in �. One can show that this series

converges absolutely and uniformly for t 2 ½0; t0�, if t0 is
a fixed number and � (depending on t0) is small enough

(see Appendix D). Substitution of this solution into

integral representation (26) gives the solution of the

problem (8) and (21) for uðr; tÞ. The solution of the

original problem for T ðr; tÞ is T ðr; tÞ ¼ uðr; tÞ=r. Keeping
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only linear terms in the series (29) we obtain the

approximate solution of Eq. (27) with accuracy Oð�2Þ:

uð1; tÞ ¼ Uð1; tÞ �
Z t

0

MðsÞGðt � s; 1Þds

þ �

Z t

0

gðsÞm0ðsÞGðt � s; 1Þds: ð32Þ
1.0E+02

1.0E+03

0.0 0.2 0.4 0.6 0.8 1.0
r

Rd0 = 25 µm

Fig. 1. Plots of thermal radiation power density absorbed by

diesel fuel droplets versus normalised radius. Droplet radii are

taken equal to 25 and 50 lm; external temperatures are taken

equal to 1000 and 2000 K (indicated near the curves). The

curves are presented for unboiled low sulfur ESSO AF1313

diesel fuel used in cars (DF1 fuel).
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Fig. 2. Plots of droplet temperature versus normalized radius r
for various times (indicated near the curves). Droplet radius

and gas and external temperatures are taken equal 50 lm and

2000 K respectively. Curves for the cases when thermal radia-

tion was ignored (dashed) and taken into account (solid) are

presented.
4. Application

The theory developed in the previous sections is ap-

plied to a specific problem of heating fuel droplets in

diesel engines [5,6]. We take gas pressure p ¼ 6 MPa,

Tg ¼ Text ¼ 1000 K and 2000 K, kg ¼ 0:061 W/(mK),

Ts0 ¼ 300 K, ql ¼ 846 kg/m3, Ma ¼ 28:97 kg/kmol,

Mf ¼ 198 kg/kmol, kl ¼ 0:14 W/(mK), cl ¼ 2 kJ/(kgK),

a ¼ 15:5274, b ¼ 5383:59, L ¼ 254 kJ/kg, Rd ¼ 50 lm
and Rd ¼ 25 lm [26,27,31,32]. Droplets are assumed to

be stationary (Red ¼ 0). The generalisation of the results

to the case of moving droplets would require the mod-

ification of h and introducing keff instead of kl as dis-

cussed in the Introduction. We consider the case

h ¼ const which allows us to focus the analysis on for-

mula (16). This formula needs to be used in combination

with formula (5) for _Rd and remembering the definition

of Teff .
We start with calculating the radial distribution of

the radiation power absorbed inside droplets. The plots

for jk and the approximations for wðrÞ presented in

Appendix E have been used. We restrict our analysis to

the unboiled low sulfur ESSO AF1313 diesel fuel used in

cars. Analysis of other types of fuel leads to essentially

similar results. The plots of P ðrÞ versus r for Rd ¼ 50

lm, Rd ¼ 25 lm and Tg ¼ Text ¼ 1000 K, Tg ¼ Text ¼
2000 K are shown in Fig. 1. The shape of these curves is

rather similar to the one reported in [23], where slightly

less accurate results of measurement of jk of diesel fuel

and the simplified approximation of jk have been used.

The difference between the values of jk predicted by [23]

and our calculations did not exceed 9%. A typical fea-

ture of all plots is the presence of two maxima in P ðrÞ:
one near the surface of the droplet, and another at

r ¼ 1=n � 1=1:46 ¼ 0:68. The discontinuity of the slope

at r ¼ 1=n is related to the fact that all rays entering the

droplet from outside, will concentrate in the cone with

the half angle h ¼ sin�1ð1=nÞ after refraction at the

surface. The spheres of radii r ¼ 1=n are the maximal

spheres inside this cone. The results show that increasing

the size of droplet radii leads to an increase in the value

of PðrÞ. Hence, larger droplets are expected to absorb

more thermal radiation due to their size, and also to

have a larger concentration of absorbed radiation. These

results are consistent with the prediction of the overall

absorption efficiency factor reported in [2]. As expected,
the increase in external temperature leads to a consid-

erable increase of PðrÞ.
The application of formula (16) requires truncation

of the series. As will be shown later, this series converges

rather quickly. As a starting point, however, we take 25

terms of this series (the higher-order terms are in most

cases less than the round-up errors of the computer).

Assuming Teff ¼ Text ¼ const ¼ 2000 K, T ðr; t ¼ 0Þ ¼
Td ¼ 300 K and Rd ¼ 50 lm the plots of T ðr; tÞ versus r
are presented in Fig. 2 for t ¼ 0:01, 0.1, 1 and 5 ms both

with and without radiation. As follows from this figure,

the effect of radiation leads to a small (about 10%) in-

crease in the droplet temperature at t ¼ 5 ms. At shorter

times this increase is smaller. Note that radiation

leads to an increase in temperature throughout the
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Fig. 3. Plots of droplet surface temperature versus time for the

case when Teff ¼ const (zeroth iteration) and Teff ¼ TeffðtÞ (first
iteration). Droplet radius and gas and external temperatures are

taken equal 50 lm and 2000 K respectively. Curves for the cases

when thermal radiation was ignored (dashed) and taken into

account (solid) are presented.
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Fig. 4. Plots of droplet radius versus time for the case when the

initial droplet radius and gas and external temperatures are

equal 50 lm and 2000 K respectively. Effects of thermal radi-

ation are taken into account.

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0

T
/K

1 term

2 terms

3 terms

r

25 terms

t=1 ms

Fig. 5. Plots of droplet temperature versus normalized radius r
for t ¼ 1 ms. The plots refer to the case when 1, 2, 3 and 25

terms in the series are taken. Droplet radius and gas and

external temperatures are taken equal 50 lm and 2000 K

respectively. The contribution of thermal radiation was taken

into account.
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whole droplet as expected. At shorter times, droplet

temperature increases in the immediate vicinity of its’

surface only.

The plots of droplet surface temperatures versus time

for the same values of gas temperature, initial droplet

temperature and droplet radii, as in Fig. 2, are shown in

Fig. 3. Similarly to Fig. 2, the plots taking and not

taking into account the effects of radiation are pre-

sented. In contrast to Fig. 2, the cases Teff ¼ Text ¼ const

(zeroth iteration) and Teff ¼ TeffðtÞ, but Text ¼ const (first

iteration) are presented. The plots for the second and

higher iterations are practically indistinguishable from

those for the first iteration.

In agreement with Fig. 2, Fig. 3 shows that the effect

of thermal radiation leads to a noticeable (up to about

10%) increase in droplet surface temperature. This effect

is even more pronounced for higher gas temperatures.

Comparing the predictions of the zeroth and first

approximations, we can see that at t6 2 ms they are

practically undistinguishable. This means that the effects

of droplet evaporation at t6 2 ms can be ignored. This is

confirmed by Fig. 4 where the plot of Rd versus time, as

predicted by (5), is shown. As follows from Fig. 4, the

decrease in droplet radius at t6 2 ms is less than 0.3%.

This justifies our approximation that Rd ¼ const.

Now we can investigate the influence of the number

of terms in the series taken on the accuracy of the pre-

dicted values of droplet temperature. The plots of T ðrÞ
versus r for t ¼ 1 ms, Teff ¼ Text ¼ const ¼ 2000 K,

T ðr; t ¼ 0Þ ¼ Td ¼ 300 K, Rd0 ¼ 50 lm and several

numbers of terms in the series taken are shown in Fig. 5.

The effect of radiation was taken into account. As can be

seen in this figure, the prediction of the series with just

three terms is practically indistinguishable from the

prediction of the series with 25 terms. This agrees with
the prediction of Table 1, where the results of our

analysis of the number of terms required for

Teff ¼ Text ¼ 2000 K and the average errors are shown.

The line ‘number of terms’ indicates the number of

terms required in order for the average error in the

estimate of the series does not exceed 1%. The actual

average error is indicated in the same table. Note that if

we consider the errors in the estimate of Ts rather than
average errors, then the number of terms required to

meet the same criterion would be slightly different. For

Rd ¼ 50 lm and t ¼ 0:01, 0.1, 1 and 5 ms these numbers

would be 12, 5, 2 and 1 respectively. For Rd ¼ 25 lm
and t ¼ 0:01, 0.1, 1 and 5 ms these numbers would be 8,

3, 1 and 1 respectively. As follows from this table, the

required number of terms increases with decreasing t
and increasing Rd.



Table 1

Rd0 (lm)

50 25

t (ms) 0.01 0.1 1 5 0.01 0.1 1 5

Number of terms 6 5 3 2 6 4 2 2

Average error (%) 0.94 0.61 0.14 0.16 0.63 0.22 0.07 0.02

Table 2

Rd0 (lm)

50 25

t (ms) 0.01 0.1 1 5 0.01 0.1 1 5

Number of terms 3 2 2 2 2 2 2 2

Average error (%) 0.38 0.92 0.45 0.14 0.05 0.07 0.04 0.02

Table 3

Rd0 (lm)

50 25

Teff (K) 1000 2000 1000 2000

tup (ms) 6.4 2.0 1.6 0.5

Decrease in

predicted Teff (%)

1.19 0.99 1.19 1.71
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In Table 2 the results similar to those shown in Table

1, but for the initial distribution of droplet temperature

predicted by Eq. (16) for t ¼ 1 ms are shown. This can

approximate further heating of an initially preheated

droplet. As can be seen from this table, the number of

terms in the series required for practical applications is

noticeably less that in the case of modelling of heating of

a cold droplet. As in the case shown in Table 1, the

number of terms required decreases with decrease of

droplet radius. In fact if droplet radii less than 10 lm are

considered then just one term in the series would be

sufficient to ensure the error of less than 1%. If we

consider the errors in the estimate of Ts rather than

average errors, then the number of terms required to get

an error of less than 1% would be slightly different. For

Rd ¼ 50 lm and t ¼ 0:01, 0.1, 1 and 5 ms these numbers

would be 3, 2, 2 and 1 respectively. For Rd ¼ 25 lm and

all times one term would be sufficient. This has an

important implication when we incorporate the results

into a CFD code. If we ignore the effects of very initial

heating of droplets, then three terms of the series in (16)

would be more than enough to ensure that the error of

calculations is well below 1%.

Plots similar to those shown in Figs. 2–5 can be

shown for other values of Teff and Text and Rd. One of the

most important characteristics following from these

curves would be the upper time limit (tup) over which the

approximations Teff ¼ const and Rd ¼ const are valid.

The values of tup for various Teff and Rd are shown in

Table 3. It was assumed that Teff ¼ Text.
The values of tup have been estimated as those t for

which the decrease in Rd have not exceeded 0.2%. As

follows from this table, the values of tup decrease with

decreasing Rd and increasing Teff . Note that even in the

most unfavourable situation the values of tup are large

enough to play an important role in the process of

droplet heating in diesel engines [5,6]. Note that taking

into account the contribution of _Rd leads to a much
larger decrease in Ts than in Rd as expected. This pro-

vides additional support to our assumption that

Rd ¼ const, but _Rd 6¼ 0.
5. Conclusions

Analytical solutions of the heat conduction equation

inside a spherical droplet have been suggested. The

droplet has been assumed to be heated by convection

and radiation from the surrounding hot gas––a situation

typical in many engineering applications. Initial droplet

evaporation, the effects of time dependent gas tempera-

ture and the convection heat transfer coefficient have

been taken into account. Three approximations for the

convection heat transfer coefficient have been consid-

ered. Firstly, this coefficient has been assumed constant

and an explicit formula for the time dependent distri-

bution of temperature inside droplets has been derived.

Secondly, the general case of time dependent convection

heat transfer coefficient has been considered. In this case

the solution of the original differential equation has been

reduced to the solution of the Volterra integral equation

of the second kind. A numerical scheme for the solution

of this equation has been suggested. Thirdly, the case of

almost constant convection heat transfer coefficient has

been considered. In this case the problem has been

solved using the perturbation theory. A set of solutions
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corresponding to ascending approximations have been

obtained.

Results referring to the case of constant convection

heat transfer coefficient have been applied to a typical

problem of fuel droplet heating in a diesel engine. Re-

sults of the measurements of the index of absorption of

four different types of diesel fuels have been presented.

Only results referring to low-sulfur ESSO AF1313 diesel

fuel used in cars have been used in the analysis. Results

referring to other types of diesel fuel are expected to lead

to similar conclusions. It has been shown that the effects

of radiation lead to a noticeable increase in droplet

temperature, especially at larger times and larger droplet

radii. The distribution of temperature inside droplets has

been shown to be different from constant values, as as-

sumed in the isothermal model. This implies that finite

thermal conductivity of fuel droplets and the effects of

radiation need to be taken into account when modelling

droplet heating in diesel engines. It has been shown that

the range of times when the model is applicable de-

creases with decreasing droplet radii and increasing

ambient gas temperature.
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Appendix A. Solution of Eq. (12)

We look for the solution of Eq. (12) subject to (13) in

the form:

W ðr; tÞ ¼
X1
n¼1

cnðtÞvnðrÞ; ðA:1Þ

where functions vnðrÞ form the full set of non-trivial

solutions of the equation:

d2v
dr2

þ k2v ¼ 0 ðA:2Þ

subject to the boundary condition vjr¼0 ¼ dv
dr þ
�

h0vÞjr¼1 ¼ 0. The general solution of Eq. (A.2) vðrÞ ¼
A cos kr þ B sin kr satisfies the boundary condition when

A ¼ 0 and

k cos k þ h0 sin k ¼ 0: ðA:3Þ

The solution of Eq. (A.3) gives a set of positive eigen-

values kn numbered in ascending order (n ¼ 1; 2; . . .). If
h0 ¼ 0, then kn ¼ p n� 1

2

� �
. Assuming that B ¼ 1,

expressions for eigenfunctions vn can be written as

vnðrÞ ¼ sin knr ðn ¼ 1; 2; . . .Þ. The value of B is implicitly

accounted for by the coefficients cnðtÞ in series (A.1). The
functions vnðrÞ form a full set of eigenfunctions which

are orthogonal for r 2 ½0; 1�. The orthogonality of

functions vn follows from the relation:Z 1

0

vnðrÞvmðrÞdr ¼ dnmkvnk2; ðA:4Þ

where

dnm ¼ 0; n 6¼ m;
1; n ¼ m;

�
kvnk2 ¼

1

2
1

�
� sin 2kn

2kn

�
¼ 1

2
1

 
þ h0
h20 þ k2

n

!
:

The eigenvalue k0 ¼ 0 describes the trivial eigenfunction

v0ðrÞ ¼ 0. The orthogonality of vn allows us to expand

known functions in Eqs. (12) and (13) in the series:

eP ðrÞ ¼X1
n¼1

pnvnðrÞ; ðA:5Þ

eT0ðrÞ ¼
X1
n¼1

qnvnðrÞ; ðA:6Þ

f ðrÞ 
 �r=ð1þ h0Þ ¼
X1
n¼1

fnvnðrÞ; ðA:7Þ

where

pn ¼
1

kvnk2
Z 1

0

eP ðrÞvnðrÞdr; qn¼
1

kvnk2
Z 1

0

eT0ðrÞvnðrÞdr;

fn¼
1

kvnk2
Z 1

0

f ðrÞvnðrÞdr¼� sinkn

kvnk2k2
n

:

9>>>=>>>;
ðA:8Þ

Having substituted series (A.1), (A.5) and (A.7) into

Eq. (12), we obtainX1
n¼1

dcnðtÞ
dt

�
þ cnðtÞjk2

n

�
vnðrÞ

¼
X1
n¼1

pn

�
þ fn

dl0ðtÞ
dt

�
vnðrÞ: ðA:9Þ

Both sides of Eq. (A.9) are Fourier series of functions

vnðrÞ. Two Fourier series are equal if and only if their

coefficients are equal. This implies that

dcnðtÞ
dt

þ cnðtÞjk2
n ¼ pn þ fn

dl0ðtÞ
dt

: ðA:10Þ

The initial condition for cnðtÞ follows from the initial

condition for W : cnð0Þ ¼ qn þ fnl0ð0Þ. The solution of

(A.10), subject to this initial condition, can be written as

cnðtÞ ¼
pn
jk2

n

þ exp½�jk2
nt� qn

 
þ fnl0ð0Þ �

pn
jk2

n

!

þ fn

Z t

0

dl0ðsÞ
ds

exp½�jk2
nðt � sÞ�ds: ðA:11Þ
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Having substituted functions (A.11) and vðrÞ into series

(A.1) we obtain solution (14).
Appendix B. Estimate of G(t; r) at tfi0

Series (24) converges absolutely and uniformly to the

continuous function for ðt; rÞ 2 ½d;1Þ 
 ½0; 1� for any

small d > 0 since

exp½�jk2
nt� < exp½�jn2t�6 exp½�jn2d� ðB:1Þ

(recall that k2
n > n2 for n > 1 according to inequalities

(17)). Now we prove the estimate (25) for t > 0.

Inequality (B.1) allows us to write

jGðt; rÞj6 c0j 1

(
þ
X1
n¼2

exp½ � jn2t�
)


 eGðtÞ; ðB:2Þ

where c0 is a constant for which the condition

kvnk�2
6 c0 is satisfied. For example, if h0 P 0 we can

take c0 ¼ 2 since kvnk2 P 1=2. The sum
P1

n¼2 exp½�jn2t�
can be considered as a sum of areas of polygons of unit

width placed under the curve exp½�jy2t�. This sum is less

than the area under this curve. Hence,X1
n¼2

exp½�jn2t� <
Z 1

1

exp½�jy2t�dy

<

Z 1

0

exp
�
� jy2t

�
dy

¼ 1ffiffiffiffiffi
jt

p
Z 1

0

exp½�z2�dz ¼
ffiffiffi
p

p

2
ffiffiffiffiffi
jt

p : ðB:3Þ

Having substituted (B.3) into (B.2), we obtain

jGðt; rÞj6 eGðtÞ < c0j 1

�
þ

ffiffiffi
p

p

2
ffiffiffiffiffi
jt

p
�
< ~c=

ffiffi
t

p
; t 2 ð0; t0�

ðB:4Þ

for any fixed t0 > 0. The new constant ~c depends on t0.
Inequality (B.4) is equivalent to Inequality (25). It holds

uniformly for r 2 ½0; 1�.
Appendix C. Numerical solution of Eq. (27)

Let wðtÞ 
 uð1; tÞ and rewrite Eq. (27) as

wðtÞ ¼ Uð1; tÞ �
Z t

0

½MðsÞ � h1ðsÞwðsÞ�Gðt � s; 1Þds:

ðC:1Þ

We look for the solution of Eq. (C.1) for t 2 ½0; t̂�, where
t̂ is a constant. Let Dt ¼ t̂=N and tn ¼ nDt, where N is the

total number of timesteps, n ¼ 0; 1; . . . ;N is the number

of the current timestep. Note that t0 ¼ 0 and tN ¼ t̂.
Discretisation of Eq. (C.1) gives
wðtnÞ ¼ Uð1; tnÞ �
Xn
j¼1

Z tj

tj�1

½MðsÞ � h1ðsÞwðsÞ�


 Gðtn � s; 1Þds; ðC:2Þ

where n ¼ 1; . . . ;N . Note that wðt0Þ ¼ wð0Þ ¼ Uð1; 0Þ ¼eT0ð1Þ is a known constant.

The first ðn� 1Þ integrals in this sum can be

approximated asZ tj

tj�1

½MðsÞ � h1ðsÞwðsÞ�Gðtn � s; 1Þds

� MðsjÞ
�

� h1ðsjÞ
½wðtjÞ þ wðtj�1Þ�

2

�
Gðtn � sj; 1ÞDt;

ðC:3Þ

where j ¼ 1; 2; . . . ; n� 1, sj ¼ tj � 1
2
Dt. Approximation

(C.3) is valid since all functions in the integrand are

continuous and we look for the solution in the class of

continuous functions. The known functions are taken at

s ¼ sj (middle of the range ½tj�1; tj�), while the unknown

functions are taken as the average of the values at the

end points tj�1 and tj.
The last term in the sum in Eq. (C.2) requires special

investigation since the kernel Gðtn � s; 1Þ in the inte-

grand becomes singular when s ! tn � 0 (see estimate

(B.4)). All other functions in this integrand, including

the unknown function uðtÞ are assumed continuous.

Hence, we can writeZ tn

tn�1

½MðsÞ � h1ðsÞwðsÞ�Gðtn � s; 1Þds

� MðsnÞ
�

� h1ðsnÞ
wðtnÞ þ wðtn�1Þ

2

�Z tn

tn�1

Gðtn � s; 1Þds:

ðC:4Þ

Let us consider an auxiliary integral: Ið�tÞ ¼R�t
tn�1

Gðtn � s; 1Þds, where �t 2 ðtn�1; tnÞ. In the range

½tn�1;�t� series (28) converges uniformly and absolutely as

proven in Appendix B. Also, all terms of this series are

continuous. Hence the order of summation and inte-

gration can be changed and using formula (28), we can

write:

Ið�tÞ ¼ �2j
X1
m¼1

k2
m

h20 þ h0 þ k2
m

Z �t

tn�1

exp½�jk2
mðtn � sÞ�ds

¼ �
X1
m¼1

2

h20 þ h0 þ k2
m

exp½
n

� jk2
mðtn ��tÞ�

� exp½ � jk2
mDt�

o
: ðC:5Þ

The denominator in series (C.5) is always positive since

kvnk2 > 0.

Remembering estimate (17), the series in (C.5) con-

verges absolutely and uniformly for�t 2 ½tn�1; tn�. Since all
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terms in series (C.5) are continuous, the series is the

continuous function as well. This allows us to consider

the limit �t ! tn � 0 in both parts of formula (C.5) to

obtainZ tn

tn�1

Gðtn � s; 1Þds

¼ lim
�t!tn�0

Ið�tÞ

¼ �
X1
m¼1

2

h20 þ h0 þ k2
m

lim
�t!tn�0

exp½
�

� jk2
mðtn ��tÞ�

� exp½ � jk2
mDt�

�
¼ �2

X1
m¼1

1

h20 þ h0 þ k2
m

1
�

� exp½ � jk2
mDt�

�

 g:

ðC:6Þ

If h0 ¼ 0 then km ¼ pðm� ð1=2ÞÞ. The combination

of formulae (C.3), (C.4) and (C.6) allows us to present

Eq. (C.2) in the following form:

wðtnÞ ¼ Uð1; tnÞ � fMðsnÞ � h1ðsnÞ½wðtnÞ þ wðtn�1Þ�=2gg

�
Xn�1

j¼1

fMðsjÞ � h1ðsjÞ½wðtjÞ þ wðtj�1Þ�=2g


 Gðtn � sj; 1ÞDt; ðC:7Þ
where n ¼ 1; 2; . . . ;N , and g is given by series (C.6).

Eq. (C.7) can be rearranged to the form particularly

convenient for numerical analysis:

wðtnÞ ¼
1

1� 0:5h1ðsnÞg
Uð1; tnÞ

(

� MðsnÞ
�

� h1ðsnÞwðtn�1Þ
2

�
g

�
Xn�1

j¼1

fMðsjÞ � h1ðsjÞ½wðtjÞ þ wðtj�1Þ�=2g


 Gðtn � sj; 1ÞDt
)
: ðC:8Þ

For n ¼ 1 the sum in formula (C.8) is equal to zero and

wðt0Þ is a known constant (see above). This allows us to

calculate wðt1Þ explicitly from formula (C.8). Once wðt1Þ
has been calculated we can use formula (C.8) for cal-

culation of wðt2Þ etc. At the nth step, formula (C.8) is

used for calculation of wðtnÞ using the values of

wðt0Þ;wðt1Þ; . . .wðtn�1Þ calculated at the previous steps.

At this step all terms in the sum
Pn�1

j¼1 are already

known. Once we have obtained the solution of Eq. (27)

we can find the value of uðr; t̂Þ from a discretised form of

Eq. (23):
uðr; t̂Þ ¼ Uðr; t̂Þ �
XN
j¼1

Z tj

tj�1

lg0ðsÞGðt � s; rÞds

¼ Uðr; t̂Þ �
XN�1

j¼1

lg0ðtj�1Þ þ lg0ðtjÞ
2

Gð̂t � sj; rÞDt

�
lg0ðtN�1Þ þ lg0ðtN Þ

2

Z tN

tN�1

GðtN � s; rÞds;

ðC:9Þ

where t̂ ¼ tN . From estimate (25) it follows that the last

integral is improper and needs to be calculated sepa-

rately. Remembering Eq. (24), we can writeZ tN

tN�1

GðtN � s; rÞds

¼ �j
X1
n¼1

sin kn

kvnk2
sin knr

Z tN

tN�1

exp½�jk2
nðtN � sÞ�ds

¼ �
X1
n¼1

sin kn

kvnk2
sinðknrÞ

k2
n

½1� expð�jk2
nDtÞ�

¼ �2
X1
n¼1

h20 þ k2
n

h20 þ h0 þ k2
n

sin kn sinðknrÞ
k2
n

½1� expð�jk2
nDtÞ�:

ðC:10Þ

When deriving this equation we took into account the

expression for kvnk2 introduced in Eq. (A.9). This deri-

vation is similar to the one given above (see Eq. (C.6)).

Having substituted Eq. (C.9) into (C.8) we obtain the

required value of uðr; t̂Þ. Note that lg0ðtjÞ ¼ MðtjÞ�
h1ðtjÞuð1; tjÞ, where uð1; tjÞ is the solution of Eq. (C.8).
Appendix D. Investigation of the convergence of (29)

Let t0 be an arbitrary fixed positive number and

introduce the norm of the continuous function F ðtÞ for
t 2 ½0; t0�, kF k0 ¼ max06 t6 t0 jF ðtÞj. Let us rewrite the

integral in the last equation in the system (31) as

mjðtÞ ¼
Z t

0

gðt � sÞmj�1ðt � sÞGðs; 1Þds; ðD:1Þ

where t 2 ½0; t0�. Hence, we can estimate the terms in

series (29) as

jmjðtÞj6
Z t

0

jgðt � sÞjjmj�1ðt � sÞjjGðs; 1Þjds

6 kgk0kmj�1k0
Z t

0

jGðs; 1Þjds

6 kgk0kmj�1k0
Z t

0

~cffiffiffi
s

p ds

¼ 2~c
ffiffi
t

p
kgk0kmj�1k0; ðD:2Þ

where t 2 ½0; t0�. When deriving this estimate we took

into account inequality (B.4) for r ¼ 1.

Inequality (D.2) can be applied for mj�1, mj�2 etc. This

leads to the new estimate:
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Fig. 6. Spectral distribution of the index of absorption jk of

low sulfur ESSO AF1313 diesel fuel used in cars (DF1: boiled

and unboiled) and BP Ford reference diesel fuel used in off road

equipment (DF2: boiled and unboiled).
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jmjðtÞj6 ð2~c
ffiffi
t

p
kgk0Þ

2kmj�2k0 6 � � � 6 ð2~c
ffiffi
t

p
kgk0Þ

jkm0k0;
ðD:3Þ

where m0 is given by (31) and t 2 ½0; t0�. Inequality (D.3)

allows us to estimate series (29) as

X1
j¼0

�jjmjðtÞj6
X1
j¼0

�
2~c�

ffiffi
t

p
kgk0

 j
km0k0

6

X1
j¼0

2~c�
ffiffiffiffi
t0

p
kgk0

�  j
km0k0; ðD:4Þ

The series on the right-hand side of (D.4) is the

geometrical progression which converges when

2~c�
ffiffiffiffi
t0

p kgk0 < 1, i.e. when

�
ffiffiffiffi
t0

p
< 1= 2~ckgk0

�  
; ðD:5Þ

where the constant ~c is determined by (B.4). Based on

the Weirschtrass criterion about uniform convergence of

functional series, series (29) converges absolutely and

uniformly for t 2 ½0; t0� if estimate (D.5) is valid. If t0 is

fixed then the criterion (D.5) can be rewritten as

� < 1= 2~c
ffiffiffiffi
t0

p
kgk0

�  
: ðD:6Þ

Note that series (29) converges not only for small � but
also for arbitrary fixed � when t0 is small enough. In this

case criterion (D.6) needs to be replaced by the criterion:

t0 < 1= 2~c�kgk0
� �� �2

. Let us now estimate the remainder

of series (29) using inequality (D.3):

X1
j¼Nþ1

�jmjðtÞ
�����

�����6 km0k0
X1
j¼Nþ1

2~c�
ffiffiffiffi
t0

p
kgk0

�  j

¼ km0k0
2~c�

ffiffiffiffi
t0

p kgk0
�  Nþ1

1� 2~c�
ffiffiffiffi
t0

p kgk0
¼ O ð�

ffiffiffiffi
t0

p
ÞNþ1

�  
: ðD:7Þ

Hence, it follows from series (29) that

mðtÞ ¼
XN
j¼0

�jmjðtÞ þO ð�
ffiffiffiffi
t0

p
ÞNþ1

�  
; ðD:8Þ

where t 2 ½0; t0� and estimate (D.5) is assumed to be

valid.
Appendix E. Approximations for w(r)

Results of experimental measurements of jk for

typical diesel fuels in the range 0.2–6 lm are shown in

Fig. 6 (see [33] for the description of the experimental

techniques used).
The values of wðrÞ were calculated based on the fol-

lowing equations [25]:

wðrÞ ¼ ½1� l�Hðr � 1=nÞ�ðr2 þ �cÞ
0:6 1� l5

c

� �
� l3

c=n
2

� �
þ �c 1� l3

c

� � ; ðE:1Þ

where

�c ¼ 1:5

s20
� 0:6

n2
; l� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

nr

� �2
s

;

lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

n

� �2
s

; s0 ¼ akRd ¼ 4pjkRd=k;

HðxÞ ¼ 0 when x < 0

1 when xP 0

�
and

wðrÞ ¼ n2s30
3

exp � n s0 � sð Þ½ �
s0ðns0 � 2Þ þ ð2=nÞ½1� expð�ns0Þ; �

;

ðE:2Þ

where s ¼ akR, n ¼ 2=ð1þ lcÞ. Eq. (E.1) was used when

s0 < n
ffiffiffiffiffiffiffi
2:5

p
, otherwise Eq. (E.2) was used. The general-

isation of the model presented in [23] to the case of

asymmetrically illuminated droplet have been reported

in [34].
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